Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6675): eadf3208, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060659

RESUMO

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Assuntos
Envelhecimento , MAP Quinase Quinase Quinase 3 , Obesidade , Espécies Reativas de Oxigênio , Ribossomos , Estresse Fisiológico , Animais , Camundongos , Envelhecimento/metabolismo , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Peixe-Zebra , Camundongos Knockout
2.
Cell Metab ; 35(10): 1722-1735.e5, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37689069

RESUMO

Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.

3.
Nat Metab ; 5(4): 677-698, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055619

RESUMO

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Assuntos
Depressores do Apetite , Camundongos , Masculino , Animais , Depressores do Apetite/farmacologia , Ácido Láctico , Termogênese/fisiologia , Sódio , Concentração Osmolar
4.
Proc Natl Acad Sci U S A ; 120(14): e2220102120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996103

RESUMO

Molecular clocks in the periphery coordinate tissue-specific daily biorhythms by integrating input from the hypothalamic master clock and intracellular metabolic signals. One such key metabolic signal is the cellular concentration of NAD+, which oscillates along with its biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT). NAD+ levels feed back into the clock to influence rhythmicity of biological functions, yet whether this metabolic fine-tuning occurs ubiquitously across cell types and is a core clock feature is unknown. Here, we show that NAMPT-dependent control over the molecular clock varies substantially between tissues. Brown adipose tissue (BAT) requires NAMPT to sustain the amplitude of the core clock, whereas rhythmicity in white adipose tissue (WAT) is only moderately dependent on NAD+ biosynthesis, and the skeletal muscle clock is completely refractory to loss of NAMPT. In BAT and WAT, NAMPT differentially orchestrates oscillation of clock-controlled gene networks and the diurnality of metabolite levels. NAMPT coordinates the rhythmicity of TCA cycle intermediates in BAT, but not in WAT, and loss of NAD+ abolishes these oscillations similarly to high-fat diet-induced circadian disruption. Moreover, adipose NAMPT depletion improved the ability of animals to defend body temperature during cold stress but in a time-of-day-independent manner. Thus, our findings reveal that peripheral molecular clocks and metabolic biorhythms are shaped in a highly tissue-specific manner by NAMPT-dependent NAD+ synthesis.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Animais , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Ritmo Circadiano/fisiologia , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Citocinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(8): e2218510120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780527

RESUMO

The circadian clock is a cell-autonomous transcription-translation feedback mechanism that anticipates and adapts physiology and behavior to different phases of the day. A variety of factors including hormones, temperature, food-intake, and exercise can act on tissue-specific peripheral clocks to alter the expression of genes that influence metabolism, all in a time-of-day dependent manner. The aim of this study was to elucidate the effects of exercise timing on adipose tissue metabolism. We performed RNA sequencing on inguinal adipose tissue of mice immediately following maximal exercise or sham treatment at the early rest or early active phase. Only during the early active phase did exercise elicit an immediate increase in serum nonesterified fatty acids. Furthermore, early active phase exercise increased expression of markers of thermogenesis and mitochondrial proliferation in inguinal adipose tissue. In vitro, synchronized 3T3-L1 adipocytes showed a timing-dependent difference in Adrb2 expression, as well as a greater lipolytic activity. Thus, the response of adipose tissue to exercise is time-of-day sensitive and may be partly driven by the circadian clock. To determine the influence of feeding state on the time-of-day response to exercise, we replicated the experiment in 10-h-fasted early rest phase mice to mimic the early active phase metabolic status. A 10-h fast led to a similar lipolytic response as observed after active phase exercise but did not replicate the transcriptomic response, suggesting that the observed changes in gene expression are not driven by feeding status. In conclusion, acute exercise elicits timing-specific effects on adipose tissue to maintain metabolic homeostasis.


Assuntos
Tecido Adiposo , Relógios Circadianos , Condicionamento Físico Animal , Animais , Camundongos , Adipócitos , Tecido Adiposo/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Termogênese , Condicionamento Físico Animal/fisiologia , Células 3T3-L1
6.
Nat Commun ; 13(1): 2931, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614135

RESUMO

Impaired mitochondrial oxidative phosphorylation (OXPHOS) in liver tissue has been hypothesised to contribute to the development of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease (NAFLD). It is unknown whether OXPHOS capacities in human visceral (VAT) and subcutaneous adipose tissue (SAT) associate with NAFLD severity and how hepatic OXPHOS responds to improvement in NAFLD. In biopsies sampled from 62 patients with obesity undergoing bariatric surgery and nine control subjects without obesity we demonstrate that OXPHOS is reduced in VAT and SAT while increased in the liver in patients with obesity when compared with control subjects without obesity, but this was independent of NAFLD severity. In repeat liver biopsy sampling in 21 patients with obesity 12 months after bariatric surgery we found increased hepatic OXPHOS capacity and mitochondrial DNA/nuclear DNA content compared with baseline. In this work we show that obesity has an opposing association with mitochondrial respiration in adipose- and liver tissue with no overall association with NAFLD severity, however, bariatric surgery increases hepatic OXPHOS and mitochondrial biogenesis.


Assuntos
Cirurgia Bariátrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Tecido Adiposo/patologia , Humanos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/patologia , Obesidade/cirurgia , Obesidade Mórbida/complicações , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Biogênese de Organelas , Respiração
7.
iScience ; 25(2): 103863, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198907

RESUMO

In clinical trials, oral supplementation with nicotinamide riboside (NR) fails to increase muscle mitochondrial respiratory capacity and insulin sensitivity but also does not increase muscle NAD+ levels. This study tests the feasibility of chronically elevating skeletal muscle NAD+ in mice and investigates the putative effects on mitochondrial respiratory capacity, insulin sensitivity, and gene expression. Accordingly, to improve bioavailability to skeletal muscle, we developed an experimental model for administering NR repeatedly through a jugular vein catheter. Mice on a Western diet were treated with various combinations of NR, pterostilbene (PT), and voluntary wheel running, but the metabolic effects of NR and PT treatment were modest. We conclude that the chronic elevation of skeletal muscle NAD+ by the intravenous injection of NR is possible but does not affect muscle respiratory capacity or insulin sensitivity in either sedentary or physically active mice. Our data have implications for NAD+ precursor supplementation regimens.

8.
Cell Metab ; 34(2): 329-345.e8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030324

RESUMO

Tissue sensitivity and response to exercise vary according to the time of day and alignment of circadian clocks, but the optimal exercise time to elicit a desired metabolic outcome is not fully defined. To understand how tissues independently and collectively respond to timed exercise, we applied a systems biology approach. We mapped and compared global metabolite responses of seven different mouse tissues and serum after an acute exercise bout performed at different times of the day. Comparative analyses of intra- and inter-tissue metabolite dynamics, including temporal profiling and blood sampling across liver and hindlimb muscles, uncovered an unbiased view of local and systemic metabolic responses to exercise unique to time of day. This comprehensive atlas of exercise metabolism provides clarity and physiological context regarding the production and distribution of canonical and novel time-dependent exerkine metabolites, such as 2-hydroxybutyrate (2-HB), and reveals insight into the health-promoting benefits of exercise on metabolism.


Assuntos
Relógios Circadianos , Condicionamento Físico Animal , Animais , Ritmo Circadiano , Homeostase , Fígado/metabolismo , Metabolômica , Camundongos
9.
Sci Adv ; 7(43): eabi9654, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669477

RESUMO

Circadian rhythms are generated by an autoregulatory feedback loop of transcriptional activators and repressors. Circadian rhythm disruption contributes to type 2 diabetes (T2D) pathogenesis. We elucidated whether altered circadian rhythmicity of clock genes is associated with metabolic dysfunction in T2D. Transcriptional cycling of core-clock genes BMAL1, CLOCK, and PER3 was altered in skeletal muscle from individuals with T2D, and this was coupled with reduced number and amplitude of cycling genes and disturbed circadian oxygen consumption. Inner mitochondria­associated genes were enriched for rhythmic peaks in normal glucose tolerance, but not T2D, and positively correlated with insulin sensitivity. Chromatin immunoprecipitation sequencing identified CLOCK and BMAL1 binding to inner-mitochondrial genes associated with insulin sensitivity, implicating regulation by the core clock. Inner-mitochondria disruption altered core-clock gene expression and free-radical production, phenomena that were restored by resveratrol treatment. We identify bidirectional communication between mitochondrial function and rhythmic gene expression, processes that are disturbed in diabetes.

10.
Mol Metab ; 53: 101271, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119711

RESUMO

OBJECTIVE: NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. METHODS: To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. RESULTS: SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. CONCLUSIONS: Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival.


Assuntos
Cálcio/metabolismo , Citocinas/metabolismo , Homeostase , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Desenvolvimento Muscular
11.
FEBS Lett ; 594(7): 1218-1225, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31823361

RESUMO

Utilizing the thermogenic capacity of brown adipose tissue is a potential anti-obesity strategy; therefore, the mechanisms controlling expression of thermogenesis-related genes are of interest. Pyruvate kinase (PK) catalyzes the last step of glycolysis and exists as four isoenzymes: PK, liver, PK, red blood cell, PK, muscle (PKM1 and PKM2). PKM2 has both glycolytic and nuclear functions. Here, we report that PKM2 is enriched in brown adipose compared with white adipose tissue. Specific knockdown of PKM2 in mature brown adipocytes demonstrates that silencing of PKM2 does not lead to a decrease in PK activity, but causes a robust upregulation of thermogenic uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) gene expression. This increase is not mediated by any of the known mechanisms for PKM2-regulated gene expression, thus implying the existence of a novel mechanism for PKM2-dependent effects on gene expression.


Assuntos
Adipócitos Marrons/enzimologia , Adipócitos Marrons/metabolismo , Regulação para Baixo , Piruvato Quinase/metabolismo , Termogênese/genética , Animais , Linhagem Celular , Feminino , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Proteína Desacopladora 1/genética
12.
Cell Metab ; 30(1): 92-110.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006592

RESUMO

While the timing of food intake is important, it is unclear whether the effects of exercise on energy metabolism are restricted to unique time windows. As circadian regulation is key to controlling metabolism, understanding the impact of exercise performed at different times of the day is relevant for physiology and homeostasis. Using high-throughput transcriptomic and metabolomic approaches, we identify distinct responses of metabolic oscillations that characterize exercise in either the early rest phase or the early active phase in mice. Notably, glycolytic activation is specific to exercise at the active phase. At the molecular level, HIF1α, a central regulator of glycolysis during hypoxia, is selectively activated in a time-dependent manner upon exercise, resulting in carbohydrate exhaustion, usage of alternative energy sources, and adaptation of systemic energy expenditure. Our findings demonstrate that the time of day is a critical factor to amplify the beneficial impact of exercise on both metabolic pathways within skeletal muscle and systemic energy homeostasis.


Assuntos
Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Animais , Western Blotting , Calorimetria Indireta , Glicólise/genética , Glicólise/fisiologia , Homeostase/genética , Homeostase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Masculino , Espectrometria de Massas , Camundongos , Condicionamento Físico Animal , Análise de Sequência de RNA , Software , Transcriptoma/genética
13.
J Appl Physiol (1985) ; 126(4): 993-1005, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730814

RESUMO

Metabolic dysfunction and Type 2 diabetes are associated with perturbed circadian rhythms. However, exercise appears to ameliorate circadian disturbances, as it can phase-shift or reset the internal clock system. Evidence is emerging that exercise at a distinct time of day can correct misalignments of the circadian clock and influence energy metabolism. This suggests that timing of exercise training can be important for the prevention and management of metabolic dysfunction. In this study, obese, high-fat diet-fed mice were subjected to voluntary wheel running (VWR) at two different periods of the day to determine the effects of time-of-day-restricted VWR on basal and insulin-stimulated glucose disposal. VWR in the late dark phase reduced body weight gain compared with VWR in the beginning of the dark phase. Conversely, time-of-day-restricted VWR did not influence insulin action and glucose disposal, since skeletal muscle and adipose tissue glucose uptake and insulin signaling remained unaffected. Protein abundance of the core clock proteins, brain-muscle arnt-like 1 (BMAL1), and circadian locomotor output control kaput (CLOCK), were increased in skeletal muscle after VWR, independent of whether mice had access to running wheels in the early or late dark phase. Collectively, we provide evidence that VWR in the late dark phase ameliorates diet-induced obesity without altering insulin action or glucose homeostasis. NEW & NOTEWORTHY Exercise appears to ameliorate circadian disturbances as it can entrain the internal clock system. We provide evidence that voluntary wheel running increases core clock protein abundance and influences diet-induced obesity in mice in a time-of-day-dependent manner. However, the effect of time-of-day-restricted voluntary wheel running on body weight gain is not associated with enhanced basal- and insulin-stimulated glucose disposal, suggesting that time-of-day-restricted voluntary wheel running affects energy homeostasis rather than glucose homeostasis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade/fisiologia , Animais , Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/metabolismo , Aumento de Peso/fisiologia
14.
Front Physiol ; 9: 1198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210362

RESUMO

Circadian rhythms can be perturbed by shift work, travel across time zones, many occupational tasks, or genetic mutations. Perturbed circadian rhythms are associated with the increasing problem of obesity, metabolic dysfunction, and insulin resistance. We hypothesized that insulin sensitivity in skeletal muscle follows a circadian pattern and that this pattern is important for overall metabolic function. This hypothesis was verified using mice as a model system. We observed circadian rhythmicity in whole body insulin tolerance, as well as in signaling pathways regulating insulin- and exercise-induced glucose uptake in skeletal muscle, including AKT, 5'-adenosine monophosphate-activated protein kinase (AMPK) and TBC1 domain family member 4 (TBC1D4) phosphorylation. Basal and insulin-stimulated glucose uptake in skeletal muscle and adipose tissues in vivo also differed between day- and nighttime. However, the rhythmicity of glucose uptake differed from the rhythm of whole-body insulin tolerance. These results indicate that neither skeletal muscle nor adipose tissue play a major role for the circadian rhythmicity in whole-body insulin tolerance. To study the circadian pattern of insulin sensitivity directly in skeletal muscle, we determined glucose uptake under basal and submaximal insulin-stimulated conditions ex vivo every sixth hour. Both insulin sensitivity and signaling of isolated skeletal muscle peaked during the dark period. We next examined the effect of exercise training on the circadian rhythmicity of insulin sensitivity. As expected, voluntary exercise training enhanced glucose uptake in skeletal muscle. Nevertheless, exercise training did not affect the circadian rhythmicity of skeletal muscle insulin sensitivity. Taken together, our results provide evidence that skeletal muscle insulin sensitivity exhibits circadian rhythmicity.

15.
Mol Metab ; 11: 178-188, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551635

RESUMO

OBJECTIVE: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. METHODS: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. RESULTS: Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. CONCLUSIONS: These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/metabolismo , NAD/biossíntese , Nicotinamida Fosforribosiltransferase/metabolismo , Obesidade/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Glucose/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotinamida Fosforribosiltransferase/genética , Obesidade/etiologia
16.
Small GTPases ; 9(5): 433-444, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-27754752

RESUMO

The ubiquitously expressed small GTPase RhoA is essential for embryonic development and mutated in different cancers. Functionally, it is well described as a regulator of the actin cytoskeleton, but its role in gene regulation is less understood. Using primary mouse keratinocytes with a deletion of the RhoA gene, we have now been exploring how the loss of RhoA affects gene expression. Performing transcription factor reporter assays, we found a significantly decreased activity of a RAR luciferase reporter in RhoA-null keratinocytes. Inhibition of the RhoA effector ROCK in control cells reproduced this phenotype. ATRA and retinal, but not retinol increased RAR reporter activity of keratinocytes with impaired RhoA/ROCK signaling, suggesting that retinol metabolism is regulated by RhoA/ROCK signaling. Furthermore a significant percentage of known ATRA target genes displayed altered expression in RhoA-null keratinocytes. These data reveal an unexpected link between the cytoskeletal regulator RhoA and retinoid signaling and uncover a novel pathway by which RhoA regulates gene expression.


Assuntos
Retinoides/metabolismo , Transdução de Sinais , Vitamina A/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Tamanho Celular , Regulação da Expressão Gênica , Queratinócitos/citologia , Queratinócitos/metabolismo , Ligantes , Camundongos , Pele/citologia , Células-Tronco/citologia
17.
Am J Physiol Endocrinol Metab ; 314(4): E377-E395, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208611

RESUMO

Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT in maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express Cre recombinase in tibialis anterior muscle of floxed Nampt mice. In sh Nampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55%, and 2-deoxyglucose uptake increased by 25% in sh Nampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in sh Nampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh Nampt KD cells, respectively. Expression of Cre recombinase in muscle of floxed Nampt mice reduced NAMPT and NAD+ levels by 38% and 43%, respectively. Glucose uptake increased by 40%, and mitochondrial complex IV respiration was compromised by 20%. Hypoxia-inducible factor (HIF)-1α-regulated genes and histone H3 lysine 9 (H3K9) acetylation, a known sirtuin 6 (SIRT6) target, were increased in shNampt KD cells. Thus, we propose that the shift toward glycolytic metabolism observed, at least in part, is mediated by the SIRT6/HIF1α axis. Our findings suggest that NAMPT plays a key role for maintaining NAD+ levels in skeletal muscle and that NAMPT deficiency compromises oxidative phosphorylation capacity and alters energy homeostasis in this tissue.


Assuntos
Citocinas/genética , Metabolismo Energético/genética , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Animais , Metabolismo dos Carboidratos/genética , Células Cultivadas , Citocinas/metabolismo , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nicotinamida Fosforribosiltransferase/metabolismo , Fosforilação Oxidativa , Transdução de Sinais/genética
18.
Am J Physiol Endocrinol Metab ; 314(3): E214-E223, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118013

RESUMO

During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated knockdown in mature adipocytes, we explored the effect of glucose transporters and glycolytic enzymes on brown adipocyte functions such as consumption of glucose and oxygen. Basal oxygen consumption in brown adipocytes was equally dependent on glucose and fatty acid oxidation, whereas isoproterenol (ISO)-stimulated respiration was fueled mainly by fatty acids, with a significant contribution from glucose oxidation. Knockdown of glucose transporters in brown adipocytes not only impaired ISO-stimulated glycolytic flux but also oxygen consumption. Diminishing glycolytic flux by knockdown of the first and final enzyme of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Ácidos Graxos/metabolismo , Isoproterenol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Termogênese/efeitos dos fármacos
19.
Sci Rep ; 7(1): 13101, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026134

RESUMO

Adipose tissue takes up glucose and releases lactate, thereby contributing significantly to systemic glucose and lactate homeostasis. This implies the necessity of upregulation of net acid and lactate flux capacity during adipocyte differentiation and function. However, the regulation of lactate- and acid/base transporters in adipocytes is poorly understood. Here, we tested the hypothesis that adipocyte thermogenesis, browning and differentiation are associated with an upregulation of plasma membrane lactate and acid/base transport capacity that in turn is important for adipocyte metabolism. The mRNA and protein levels of the lactate-H+ transporter MCT1 and the Na+,HCO3- cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO3-/pH homeostasis are important for the physiological function of mature adipocytes.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipócitos/citologia , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Células HEK293 , Humanos , Isoproterenol , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores/genética
20.
Sci Rep ; 7(1): 4052, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642579

RESUMO

Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after ß-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased ß-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Adipócitos Marrons/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Termogênese/efeitos dos fármacos , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...